Immunohistochemical Analysis of Primary Sensory Neurons Latently Infected with Herpes Simplex Virus Type 1

Author:

Yang L.1,Voytek C. C.1,Margolis T. P.1

Affiliation:

1. F. I. Proctor Foundation and Department of Ophthalmology, University of California, San Francisco, San Francisco, California 94143-0944

Abstract

ABSTRACT We characterized the populations of primary sensory neurons that become latently infected with herpes simplex virus (HSV) following peripheral inoculation. Twenty-one days after ocular inoculation with HSV strain KOS, 81% of latency-associated transcript (LAT)-positive trigeminal ganglion (TG) neurons coexpressed SSEA3, 71% coexpressed Trk A (the high-affinity nerve growth factor receptor), and 68% coexpressed antigen recognized by monoclonal antibody (MAb) A5; less than 5% coexpressed antigen recognized by MAb KH10. The distribution of LAT-positive, latently infected TG neurons contrasted sharply with (i) the overall distribution of neuronal phenotypes in latently infected TG and (ii) the neuronal distribution of viral antigen in productively infected TG. Similar results were obtained following ocular and footpad inoculation with KOS/62, a LAT deletion mutant in which the LAT promoter is used to drive expression of the Escherichia coli lacZ gene. Thus, although all neuronal populations within primary sensory ganglia appear to be capable of supporting a productive infection with HSV, some neuronal phenotypes are more permissive for establishment of a latent infection with LAT expression than others. Furthermore, expression of HSV LAT does not appear to play a role in this process. These findings indicate that there are marked differences in the outcome of HSV infection among the different neuronal populations in the TG and highlight the key role that the host neuron may play in regulating the repertoire of viral gene expression during the establishment of HSV latent infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3