Pyruvate Carboxylase Plays a Crucial Role in Carbon Metabolism of Extra- and Intracellularly ReplicatingListeria monocytogenes

Author:

Schär Jennifer1,Stoll Regina1,Schauer Kristina2,Loeffler Daniela I. M.1,Eylert Eva3,Joseph Biju4,Eisenreich Wolfgang3,Fuchs Thilo M.2,Goebel Werner5

Affiliation:

1. Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, D-97074 Würzburg, Germany

2. Zentralinstitut für Ernährungs- und Lebensmittelforschung, Abteilung Mikrobiologie, Technische Universität München, D-85350 Freising, Germany

3. Lehrstuhl für Biochemie, Technische Universität München, D-85747 Garching, Germany

4. Institut für Hygiene und Mikrobiologie, Universität Würzburg, D-97080 Würzburg, Germany

5. Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, D-80336 Munich, Germany

Abstract

ABSTRACTThe human pathogenL. monocytogenesis a facultatively intracellular bacterium that survives and replicates in the cytosol of many mammalian cells. The listerial metabolism, especially under intracellular conditions, is still poorly understood. Recent studies analyzed the carbon metabolism ofL. monocytogenesby the13C isotopologue perturbation method in a defined minimal medium containing [U-13C6]glucose. It was shown that these bacteria produce oxaloacetate mainly by carboxylation of pyruvate due to an incomplete tricarboxylic acid cycle. Here, we report that apycAinsertion mutant defective in pyruvate carboxylase (PYC) still grows, albeit at a reduced rate, in brain heart infusion (BHI) medium but is unable to multiply in a defined minimal medium with glucose or glycerol as a carbon source. Aspartate and glutamate of thepycAmutant, in contrast to the wild-type strain, remain unlabeled when [U-13C6]glucose is added to BHI, indicating that the PYC-catalyzed carboxylation of pyruvate is the predominant reaction leading to oxaloacetate inL. monocytogenes. ThepycAmutant is also unable to replicate in mammalian cells and exhibits high virulence attenuation in the mouse sepsis model.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3