Oxaloacetate anaplerosis differently contributes to pathogenicity in plant pathogenic fungi Fusarium graminearum and F. oxysporum

Author:

Shin Soobin,Bong Seonghun,Moon Heeji,Jeon Hosung,Kim Hun,Choi Gyung Ja,Lee Do Yup,Son HokyoungORCID

Abstract

Anaplerosis refers to enzymatic reactions or pathways replenishing metabolic intermediates in the tricarboxylic acid (TCA) cycle. Pyruvate carboxylase (PYC) plays an important anaplerotic role by catalyzing pyruvate carboxylation, forming oxaloacetate. Although PYC orthologs are well conserved in prokaryotes and eukaryotes, their pathobiological functions in filamentous pathogenic fungi have yet to be fully understood. Here, we delve into the molecular functions of the ortholog gene PYC1 in Fusarium graminearum and F. oxysporum, prominent fungal plant pathogens with distinct pathosystems, demonstrating variations in carbon metabolism for pathogenesis. Surprisingly, the PYC1 deletion mutant of F. oxysporum exhibited pleiotropic defects in hyphal growth, conidiation, and virulence, unlike F. graminearum, where PYC1 deletion did not significantly impact virulence. To further explore the species-specific effects of PYC1 deletion on pathogenicity, we conducted comprehensive metabolic profiling. Despite shared metabolic changes, distinct reprogramming in central carbon and nitrogen metabolism was identified. Specifically, alpha-ketoglutarate, a key link between the TCA cycle and amino acid metabolism, showed significant down-regulation exclusively in the PYC1 deletion mutant of F. oxysporum. The metabolic response associated with pathogenicity was notably characterized by S-methyl-5-thioadenosine and S-adenosyl-L-methionine. This research sheds light on how PYC1-mediated anaplerosis affects fungal metabolism and reveals species-specific variations, exemplified in F. graminearum and F. oxysporum.

Funder

Ministry of Agriculture, Food and Rural Affairs

National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Reference79 articles.

1. Mitochondrial TCA cycle metabolites control physiology and disease;I Martínez-Reyes;Nat Commun,2020

2. The key role of anaplerosis and cataplerosis for citric acid cycle function;OE Owen;J Biol Chem,2002

3. Lehninger AL, Nelson DL, Cox MM. Lehninger principles of biochemistry: Macmillan; 2005.

4. Anaplerotic roles of pyruvate carboxylase in mammalian tissues;S Jitrapakdee;Cell Mol Life Sci,2006

5. Roles of pyruvate carboxylase in human diseases: from diabetes to cancers and infection;U Lao-On;J Mol Med,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3