Molecular analysis of the Azotobacter vinelandii glnA gene encoding glutamine synthetase

Author:

Toukdarian A1,Saunders G1,Selman-Sosa G1,Santero E1,Woodley P1,Kennedy C1

Affiliation:

1. AFRC-IPSR Nitrogen Fixation Laboratory, University of Sussex, Brighton.

Abstract

The gene encoding glutamine synthetase (GS), glnA, was cloned from Azotobacter vinelandii on a 6-kb EcoRI fragment that also carries the ntrBC genes. The DNA sequence of 1,952 bp including the GS-coding region was determined. An open reading frame of 467 amino acids indicated a gene product of Mr 51,747. Transcription of glnA occurred from a C residue located 32 bases upstream of an ATG considered to be the initiator codon because (i) it had a nearby potential ribosome-binding site and (ii) an open reading frame translated from this site indicated good N-terminal homology to 10 other procaryotic GSs. Sequences similar to the consensus RNA polymerase recognition sites at -10 and -35 were present at the appropriate distance upstream of the transcription initiation site. As expected from earlier genetic studies indicating that expression of A. vinelandii glnA did not depend on the rpoN (ntrA; sigma 54) gene product, no sigma 54 recognition sequences were present, nor was there significant regulation of glnA expression by fixed nitrogen. Repeated attempts to construct glutamine auxotrophs by recombination of glnA insertion mutations were unsuccessful, Although the mutated DNA could be found by hybridization experiments in drug-resistant A. vinelandii transformants, the wild-type glnA region was always present. These results suggest that glnA mutations are lethal in A. vinelandii. In [14C]glutamine uptake experiments, very little glutamine was incorporated into cells, suggesting that glutamine auxotrophs are nonviable because they cannot be supplied with sufficient glutamine to support growth.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3