Role of GlnK in NifL-Mediated Regulation of NifA Activity in Azotobacter vinelandii

Author:

Rudnick Paul1,Kunz Christopher1,Gunatilaka Malkanthi K.1,Hines Eric R.1,Kennedy Christina1

Affiliation:

1. Department of Plant Pathology, The University of Arizona, Tucson, Arizona 85721

Abstract

ABSTRACT In several diazotrophic species of Proteobacteria , P II signal transduction proteins have been implicated in the regulation of nitrogen fixation in response to NH 4 + by several mechanisms. In Azotobacter vinelandii , expression of nifA , encoding the nif -specific activator, is constitutive, and thus, regulation of NifA activity by the flavoprotein NifL appears to be the primary level of nitrogen control. In vitro and genetic evidence suggests that the nitrogen response involves the P II -like GlnK protein and GlnD (uridylyltransferase/uridylyl-removing enzyme), which reversibly uridylylates GlnK in response to nitrogen limitation. Here, the roles of GlnK and GlnK-UMP in A. vinelandii were studied to determine whether the Nif phenotype of glnD strains was due to an inability to modify GlnK, an effort previously hampered because glnK is an essential gene in this organism. A glnKY51F mutation, encoding an unuridylylatable form of the protein, was stable only in a strain in which glutamine synthetase activity is not inhibited by NH 4 + , suggesting that GlnK-UMP is required to signal adenylyltransferase/adenylyl-removing enzyme-mediated deadenylylation. glnKY51F strains were significantly impaired for diazotrophic growth and expression of a nifH-lacZ fusion. NifL interacted with GlnK and GlnKY51F in a yeast two-hybrid system. Together, these data are consistent with those obtained from in vitro experiments (Little et al., EMBO J., 19:6041–6050, 2000) and support a model for regulation of NifA activity in which unmodified GlnK stimulates NifL inhibition and uridylylation of GlnK in response to nitrogen limitation prevents this function. This model is distinct from one proposed for the related bacterium Klebsiella pneumoniae , in which unmodified GlnK relieves NifL inhibition instead of stimulating it.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3