Role of glutamine synthetase in the uptake and metabolism of methylammonium by Azotobacter vinelandii

Author:

Barnes E M,Zimniak P,Jayakumar A

Abstract

Methylammonium is a substrate for the ammonium transport system of Azotobacter vinelandii. During cellular uptake methylammonium is rapidly converted to a less polar metabolite (E. M. Barnes, Jr., and P. Zimniak, J. Bacteriol. 146:512-516, 1981). This metabolite has been isolated from A. vinelandii and identified as gamma-glutamylmethylamide by mass spectroscopy, 1H nuclear magnetic resonance spectroscopy, and cochromatography with the authentic compound. Escherichia coli also accumulated gamma-glutamylmethylamide during methylammonium uptake. The biosynthesis of gamma-glutamylmethylamide in vitro required methylammonium, ATP, L-glutamate, and a soluble cell extract from A. vinelandii. The enzyme responsible for gamma-glutamylmethylamide synthesis was glutamine synthetase. In a crude extract, L-methionine-DL-sulfoximine was equipotent in inhibiting the activities for gamma-glutamyltransferase and for the synthesis of glutamine and gamma-glutamylmethylamide. Likewise, an antiserum against the glutamine synthetase of E. coli precipitated the transferase and both synthetic activities at similar titers. During repression by growth of cells on ammonium medium, the synthesis of glutamine and gamma-glutamylmethylamide in vitro was also inhibited coordinately. A partially purified preparation of glutamine synthetase from A. vinelandii utilized methylammonium as substrate (Km = 78 mM, Vmax = 0.30 mumol/min per mg), although less efficiently than ammonium (Km = 0.089 mM, Vmax = 1.1 mumol/min per mg). The kinetic properties of glutamine synthetase with methylammonium as substrate as well as the insensitivity of this activity to inhibition by T1+ were strikingly different from methylammonium translocation. Thus, methylammonium (ammonium) translocation and intracellular trapping as glutamylamides are experimentally distinguishable processes.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3