Use of Green Fluorescent Protein To Tag Lactic Acid Bacterium Strains under Development as Live Vaccine Vectors

Author:

Geoffroy Marie-Claude1,Guyard Cyril1,Quatannens Brigitte2,Pavan Sonia1,Lange Marc1,Mercenier Annick1

Affiliation:

1. Département de Microbiologie des Ecosystèmes, Institut Pasteur de Lille,1and

2. UMR 3586, Institut de Biologie de Lille,2 Lille Cedex 59019, France

Abstract

ABSTRACT The lactic acid bacteria (LAB) are safe microorganisms which are mainly used for the preparation of fermented foods and for probiotic applications. The potential of LAB as live vehicles for the production and delivery of therapeutic molecules such as antigens is also being actively investigated today. However, very little is known about the fate of live LAB when administered in vivo and about the interaction of these microorganisms with the nasal or gastrointestinal ecosystem. For future applications, it is essential to be able to discriminate the biotherapeutic strain from the endogenous microflora and to unravel the mechanisms underlying the postulated health-beneficial effect. We therefore started to investigate both aspects in a mouse model with two LAB species presently under development as live vaccine vectors, i.e., Lactococcus lactis and Lactobacillus plantarum . We have constructed different expression vectors carrying the gfp (green fluorescent protein [GFP]) gene from the jellyfish Aequoria victoria , and we found that this visible marker was best expressed when placed under the control of the inducible strong nisA promoter from L. lactis . Notably, a threshold amount of GFP was necessary to obtain a bright fluorescent phenotype. We further demonstrated that fluorescent L. plantarum NCIMB8826 can be enumerated and sorted by flow cytometry. Moreover, tagging of this strain with GFP allowed us to visualize its phagocytosis by macrophages in vitro and ex vivo and to trace it in the gastrointestinal tract of mice upon oral administration.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3