Abstract
Abstract
Background
Lactic acid bacteria (LAB) are a diverse group of Gram-positive bacteria, which are widely distributed in various diverse natural habitats. These are used in a variety of industrial food fermentations and carry numerous traits with utmost relevance to the food industry. Genetic engineering has emerged as an effective means to improve and enhance the potential of commercially important bacterial strains. However, the biosafety of recombinant systems is an important concern during the implementation of such technologies on an industrial scale. In order to overcome this issue, cloning and expression systems have been developed preferably from fully characterized and annotated LAB plasmids encoding genes with known functions.
Results
The developed shuttle vector pPBT-GFP contains two theta-type replicons with a copy number of 4.4 and 2.8 in Pediococcus acidilactici MTCC 5101 and Lactobacillus brevis MTCC 1750, respectively. Antimicrobial “pediocin” produced by P. acidilactici MTCC 5101 and green fluorescent protein (GFP) of Aequorea victoria were successfully expressed as selectable markers. Heterologous bile salt hydrolase (BSH) from Lactobacillus fermentum NCDO 394 has been efficiently expressed in the host strains showing high specific activity of 126.12 ± 10.62 in P. acidilactici MTCC 5101 and 95.43 ± 4.26 in the case of L. brevis MTCC 1750, towards glycine-conjugated bile salts preferably as compared to taurine-conjugated salts.
Conclusion
The present article details the development of a LAB/LAB shuttle expression vector pPBT-GFP, capable of replication in LAB hosts, P. acidilactici MTCC 5101, and L. brevis MTCC 1750. Pediocin and GFP have been used as selectable markers with the efficient production of heterologous extracellular bile salt hydrolase. Thus, the constructed vector pPBT-GFP, with its ability to replicate in multiple hosts, low copy number, and stability in host cells, may serve as an ideal tool for improving LAB strains of commercial value using genetic engineering.
Funder
Science and Engineering Research Board
Indian Council of Medical Research
Publisher
Springer Science and Business Media LLC
Reference74 articles.
1. Makarova K, Slesarev A, Wolf Y, Sorokin A, Koonin E, Pavlov A et al (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103:15611–15616
2. Liu W, Sun Z, Zhang J, Gao W, Wang W, Wu L et al (2009) Analysis of microbial composition in acid whey for dairy fan making in Yunnan by conventional method and 16S rRNA sequencing. Curr Microbiol 59:199–205. https://doi.org/10.1007/s00284-009-9423-x
3. Liu W, Bao Q, Qing M, Chen X, Sun T, Li M et al (2012) Isolation and identification of lactic acid bacteria from Tarag in eastern inner Mongolia of China by 16S rRNA sequences and DGGE analysis. Microbiol Res 167:110–115. https://doi.org/10.1016/j.micres.2011.05.001
4. Wang D, Liu W, Ren Y, De L, Zhang D, Yang Y (2016) Isolation and identification of lactic acid bacteria from traditional dairy products in Baotou and Bayannur of Midwestern Inner Mongolia and q-PCR analysis of predominant species. Korean J Food Sci Animal Res 36(4):499–507
5. Miller N, Wetterstrom W (2000) The beginnings of agriculture: the ancient near East and North Africa. In: Kiple K, Ornelas K (eds) (eds)The Cambridge world history of food, 2nd edn. Cambridge University Press, Cambridge, pp 1123–1139
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献