Bioluminescent monitoring of recombinant lactic acid bacteria and their products

Author:

Choi In Young1,Oh Jee-Hwan1ORCID,Wang Zhiying1,van Pijkeren Jan-Peter1ORCID

Affiliation:

1. Department of Food Science, University of Wisconsin-Madison , Madison, Wisconsin, USA

Abstract

ABSTRACT Biotherapeutic strategies to promote health, including the application of engineered microbes to deliver therapeutic molecules, hold strong promise. However, without precision tools to detect therapeutic microbes and their products, we are hampered in our ability to monitor and fine-tune therapeutic delivery. Here, we adapted a bioluminescent peptide tagging system for use in lactic acid bacteria, a group of organisms whose members are commonly exploited as delivery vehicles of therapeutics and vaccines. As a proof of concept, we developed various Limosilactobacillus reuteri strains that each produced a recombinant therapeutic protein with an 11 amino acid tag, which is essential to yield a luminescent signal. Luminescent-based quantification of recombinant protein was more sensitive than commercially available immunoassays. In addition, we demonstrated that the bioluminescent peptide tagging system allows in situ recombinant protein detection in a continuous-culture parallel bioreactor system. This presents an exciting opportunity to determine recombinant protein production dynamics in response to different stimuli. Finally, following oral administration of recombinant microbes, luminescence in intestinal and fecal samples allowed for rapid detection of microbes with equal sensitivity to conventional plate count. Because we demonstrated the functionality of this bioluminescent peptide tagging system in 12 species encompassing nine genera , our approach will create previously unexplored opportunities in lactic acid bacteria research. IMPORTANCE Lactic acid bacteria constitute a genetically diverse group of microorganisms with significant roles in the food industry, biotechnology, agriculture, and medicine. A core understanding of bacterial physiology in diverse environments is crucial to select and develop bacteria for industrial and medical applications. However, there is a lack of versatile tools to track (recombinant) protein production in lactic acid bacteria. In this study, we adapted a peptide-based bioluminescent tagging system that is functional across multiple genera and species. This system enables tracking of tagged proteins both in vitro and in situ , while it also can be used to enumerate recombinant bacteria from the mouse gastrointestinal tract with accuracy comparable to that of conventional plate counts. Our work expands the lactic acid bacteria genetic toolbox and will facilitate researchers in industry and academia with opportunities to monitor microbes and proteins under different physiologically relevant conditions.

Funder

National Research Foundation of Korea

U.S. Department of Agriculture

HHS | National Institutes of Health

UW-Madison Food Research Institutes

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3