In situ distinction between steroid receptor binding and transactivation at a target gene.

Author:

McDonnell D P,Nawaz Z,O'Malley B W

Abstract

We have developed a DNA interference assay in the yeast Saccharomyces cerevisiae that is designed to indicate the intracellular DNA-binding status of the estrogen receptor. The assay utilizes a promoter containing multiple copies of a GAL4-estrogen receptor binding sequence. This element is designed so that either an estrogen receptor or a GAL4 molecule, but not both, can occupy it simultaneously. The assay is extremely sensitive, and at concentrations of estrogen receptor below that required for maximal transcriptional activation of its target estrogen response element, a quantitative inhibition of GAL4-mediated transcription is seen. Inhibition occurs thought the disruption of complex cooperative interactions among the GAL4 molecules in this reporter. The data obtained from our experiments show that at low concentrations of receptor, hormone is required to promote DNA binding. Overexpression of receptor leads to occupation of the estrogen receptor element in the absence of ligand. In contrast, this latter receptor form will not activate transcription. Our results are consistent with a two-step process for receptor activation. Ligand first causes dissociation of receptor from an inhibitory complex within the cell and produces a DNA-binding form. Second, it converts receptor to a transcriptionally competent form. With use of this yeast model system, these two steps can be distinguished in situ.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3