Effect-Directed, Chemical and Taxonomic Profiling of Peppermint Proprietary Varieties and Corresponding Leaf Extracts

Author:

Inarejos-Garcia Antonio M.1ORCID,Heil Julia2,Martorell Patricia3ORCID,Álvarez Beatriz3,Llopis Silvia3,Helbig Ines4,Liu Jie5,Quebbeman Bryon5,Nemeth Tim5,Holmgren Deven5,Morlock Gertrud E.2ORCID

Affiliation:

1. Department of Functional Extracts, ADM Valencia, 46740 Carcaixent, Spain

2. Chair of Food Science, Institute of Nutritional Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany

3. Archer Daniels Midland, Nutrition, Health&Wellness, ADM® Biopolis S.L. Parc Cintífic Universitat de València, Calle Catedrático Agustín Escardino Benlloch, 46980 Paterna, Spain

4. Department of Science & Technology, ADM Wild Europe, 13597 Berlin, Germany

5. Department of Genetics, ADM Wild, Chicago, IL 60601, USA

Abstract

During the development of novel, standardized peppermint extracts targeting functional applications, it is critical to adequately characterize raw material plant sources to assure quality and consistency of the end-product. This study aimed to characterize existing and proprietary, newly bred varieties of peppermint and their corresponding aqueous extract products. Taxonomy was confirmed through genetic authenticity assessment. Non-target effect-directed profiling was developed using high-performance thin-layer chromatography–multi-imaging–effect-directed assays (HPTLC–UV/Vis/FLD–EDA). Results demonstrated substantial differences in compounds associated with functional attributes, notably antioxidant potential, between the peppermint samples. Further chemical analysis by high-performance liquid chromatography–photodiode array/mass spectrometry detection (HPLC–PDA/MS) and headspace solid-phase microextraction–gas chromatography–flame ionization/MS detection (headspace SPME–GC–FID/MS) confirmed compositional differences. A broad variability in the contents of flavonoids and volatiles was observed. The peppermint samples were further screened for their antioxidant potential using the Caenorhabditis elegans model, and the results indicated concordance with observed content differences of the identified functional compounds. These results documented variability among raw materials of peppermint leaves, which can yield highly variable extract products that may result in differing effects on functional targets in vivo. Hence, product standardization via effect-directed profiles is proposed as an appropriate tool.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3