A Novel Tail-Associated O91-Specific Polysaccharide Depolymerase from a Podophage Reveals Lytic Efficacy of Shiga Toxin-Producing Escherichia coli

Author:

Chen Yibao12,Li Xiangmin1234,Wang Shuang12,Guan Lingyu12,Li Xinxin12,Hu Dayue12,Gao Dongyang12,Song Jiaoyang12,Chen Huanchun1234,Qian Ping1234

Affiliation:

1. State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China

2. Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China

3. Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, Hubei, China

4. International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, Hubei, China

Abstract

Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen worldwide. The Shiga-like toxin causes diarrhea, hemorrhagic colitis, and life-threatening hemolytic uremic syndrome (HUS) in humans. Although antibiotic therapy is still used for STEC infections, this approach may increase the risk of HUS. Phages or phage-derived depolymerases have been used to treat bacterial infections in animals and humans, as in the case of the “San Diego patient” treated with a phage cocktail. Here, we showed that phage PHB19 and its O91-specific polysaccharide depolymerase Dep6 degraded STEC biofilms and stripped the lipopolysaccharide (LPS) from STEC strain HB10, which was subsequently killed by serum complement in vitro . In a mouse model, PHB19 and Dep6 protected against STEC infection and caused a significant reduction in the levels of proinflammatory cytokines. This study reports the use of an O91-specific polysaccharide depolymerase for the treatment of STEC infection in mice.

Funder

National Program on Key Research Project of China

Technology Base and Talents Special Program of Guangxi Province

Natural Science Foundation of Hubei Province

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3