Affiliation:
1. Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
Abstract
Healthcare faces a major problem with the increased emergence of antimicrobial resistance due to over-prescribing antibiotics. Bacteriophages may provide a solution to the treatment of bacterial infections given their specificity. Enzymes such as endolysins, exolysins, endopeptidases, endosialidases, and depolymerases produced by phages interact with bacterial surfaces, cell wall components, and exopolysaccharides, and may even destroy biofilms. Enzymatic cleavage of the host cell envelope components exposes specific receptors required for phage adhesion. Gram-positive bacteria are susceptible to phage infiltration through their peptidoglycan, cell wall teichoic acid (WTA), lipoteichoic acids (LTAs), and flagella. In Gram-negative bacteria, lipopolysaccharides (LPSs), pili, and capsules serve as targets. Defense mechanisms used by bacteria differ and include physical barriers (e.g., capsules) or endogenous mechanisms such as clustered regularly interspaced palindromic repeat (CRISPR)-associated protein (Cas) systems. Phage proteins stimulate immune responses against specific pathogens and improve antibiotic susceptibility. This review discusses the attachment of phages to bacterial cells, the penetration of bacterial cells, the use of phages in the treatment of bacterial infections, and the limitations of phage therapy. The therapeutic potential of phage-derived proteins and the impact that genomically engineered phages may have in the treatment of infections are summarized.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献