Prevalence and Mechanisms of Erythromycin Resistance in Group A and Group B Streptococcus : Implications for Reporting Susceptibility Results

Author:

Desjardins M.12,Delgaty K. L.2,Ramotar K.12,Seetaram C.2,Toye B.12

Affiliation:

1. Division of Microbiology, Department of Laboratory Medicine, The Ottawa Hospital

2. The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada

Abstract

ABSTRACT Increased rates of erythromycin resistance among group B Streptococcus (GBS) and group A Streptococcus (GAS) have been reported. Cross-resistance to clindamycin may be present, depending on the mechanism of resistance. We determined the prevalence of macrolide-resistant determinants in GBS and GAS isolates to guide the laboratory reporting of erythromycin and clindamycin susceptibility. Susceptibilities were determined by the disk diffusion and broth microdilution methods. Inducible and constitutive resistance to clindamycin was determined by the double-disk diffusion method. The presence of the ermTR , ermB , and mefA genes was confirmed by PCR. Of the 338 GBS isolates, 55 (17%) were resistant to erythromycin, whereas 26 (8%) were resistant to clindamycin. The erm methylase gene was identified in 48 isolates, 22 of which had inducible resistance to clindamycin and 26 of which had constitutive resistance to clindamycin. The remaining seven resistant isolates had mefA . Of the 593 GAS isolates, 49 (8%) and 6 (1%) isolates were resistant to erythromycin and clindamycin, respectively. Erythromycin resistance was due to mefA in 33 isolates, whereas 14 isolates had erm -mediated resistance (9 isolates had inducible resistance and 5 isolates had constitutive resistance). In our population, erythromycin resistance in GAS was predominantly mediated by mefA and erythromycin resistance in GBS was predominantly mediated by erm . Regional differences in mechanisms of resistance need to be taken into consideration when deciding whether to report clindamycin susceptibility results on the basis of in vitro test results. Testing by the double-disk diffusion method would be an approach that could be used to address this issue, especially for GAS.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3