Identification of the Lyso-Form N -Acyl Intramolecular Transferase in Low-GC Firmicutes

Author:

Armbruster Krista M.1,Meredith Timothy C.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA

Abstract

ABSTRACT Bacterial lipoproteins are embedded in the cell membrane of both Gram-positive and Gram-negative bacteria, where they serve numerous functions central to cell envelope physiology. Lipoproteins are tethered to the membrane by an N -acyl- S -(mono/di)-acyl-glyceryl-cysteine anchor that is variously acylated depending on the genus. In several low-GC, Gram-positive firmicutes, a monoacyl-glyceryl-cysteine with an N-terminal fatty acid (known as the lyso form) has been reported, though how it is formed is unknown. Here, through an intergenic complementation rescue assay in Escherichia coli , we report the identification of a common orthologous transmembrane protein in both Enterococcus faecalis and Bacillus cereus that is capable of forming lyso-form lipoproteins. When deleted from the native host, lipoproteins remain diacylated with a free N terminus, as maturation to the N -acylated lyso form is abolished. Evidence is presented suggesting that the previously unknown gene product functions through a novel intramolecular transacylation mechanism, transferring a fatty acid from the diacylglycerol moiety to the α-amino group of the lipidated cysteine. As such, the discovered gene has been named l ipoprotein i ntramolecular t ransacylase ( lit ), to differentiate it from the gene for the intermolecular N -acyltransferase ( lnt ) involved in triacyl lipoprotein biosynthesis in Gram-negative organisms. IMPORTANCE This study identifies a new enzyme, conserved among low-GC, Gram-positive bacteria, that is involved in bacterial lipoprotein biosynthesis and synthesizes lyso-form lipoproteins. Its discovery is an essential first step in determining the physiological role of N-terminal lipoprotein acylation in Gram-positive bacteria and how these modifications impact bacterial cell envelope function.

Funder

Eberly College of Sciences

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3