Evidence for Novel pH-Dependent Regulation of Candida albicans Rim101, a Direct Transcriptional Repressor of the Cell Wall β-Glycosidase Phr2

Author:

Baek Yong-Un1,Martin Samuel J.1,Davis Dana A.1

Affiliation:

1. Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455

Abstract

ABSTRACT Candida albicans is a commensal fungus of mucosal surfaces that can cause disease in susceptible hosts. One aspect of the success of C. albicans as both a commensal and a pathogen is its ability to adapt to diverse environmental conditions, including dramatic variations in environmental pH. The response to a neutral-to-alkaline pH change is controlled by the Rim101 signal transduction pathway. In neutral-to-alkaline environments, the zinc finger transcription factor Rim101 is activated by the proteolytic removal of an inhibitory C-terminal domain. Upon activation, Rim101 acts to induce alkaline response gene expression and repress acidic response gene expression. Previously, recombinant Rim101 was shown to directly bind to the alkaline-pH-induced gene PHR1 . Here, we demonstrate that endogenous Rim101 also directly binds to the alkaline-pH-repressed gene PHR2 . Furthermore, we find that of the three putative binding sites, only the −124 site and, to a lesser extent, the −51 site play a role in vivo. In C. albicans , the predicted Rim101 binding site was thought to be CCAAGAA, divergent from the GCCAAG site defined in Aspergillus nidulans and Saccharomyces cerevisiae . Our results suggest that the Rim101 binding site in C. albicans is GCCAAGAA, but slight variations are tolerated in a context-dependent fashion. Finally, our data suggest that Rim101 activity is governed not only by proteolytic processing but also by an additional mechanism not previously described.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3