Rim101-upregulated Fets contribute to dark pigment formation in gray cells of Candida albicans

Author:

Dai Baodi1,Xu Yinxing1,Wu Hongyu1,Chen Jiangye1

Affiliation:

1. State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China

Abstract

Abstract Candida albicans has long been known to switch between white and opaque phases; however, a third cell type, referred to as the ‘gray’ phenotype, was recently characterized. The three phenotypes have different colonial morphologies, with white cells forming white-colored colonies and opaque and gray cells forming dark-colored colonies. We previously showed that Wor1-upregulated ferroxidases (Fets) function as pigment multicopper oxidases that regulate the production of dark-pigmented melanin in opaque cells. In this study, we demonstrated that Fets also contributed to dark pigment formation in gray colonies but in a Wor1-independent manner. Deletion of both WOR1 and EFG1 locked cells in the gray phenotype in some rich media. However, the efg1/efg1 wor1/wor1 mutant could switch between white and gray in minimal media depending on the ambient pH. Specifically, mutant cells exhibited the white phenotype at pH 4.5 but switched to gray at pH 7.5. Consistent with phenotype switching, Fets expressions and melanin production were also regulated by ambient pH. Ectopic expression of the Rim101-405 allele in the mutant enabled the pH restriction to be bypassed and promoted gray cell formation in acidic media. Our data suggest that Rim101-upregulated Fets contribute to dark pigment formation in the gray cells.

Funder

National Natural Science Foundation of China

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3