The Chemokines CXCL9 and CXCL10 Promote a Protective Immune Response but Do Not Contribute to Cardiac Inflammation following Infection with Trypanosoma cruzi

Author:

Hardison Jenny L.1,Wrightsman Ruth A.1,Carpenter Philip M.2,Lane Thomas E.13,Manning Jerry E.13

Affiliation:

1. Department of Molecular Biology and Biochemistry

2. Department of Pathology and Laboratory Medicine, University of California at Irvine College of Medicine, Irvine, California

3. Center for Immunology, University of California, Irvine, California

Abstract

ABSTRACT The expression of chemokines within the heart during experimental infection of susceptible mice with the Colombiana strain of Trypanosoma cruzi was characterized in an attempt to determine a functional role for these molecules in both host defense and disease. Analysis of chemokine transcripts revealed that CXC chemokine ligand 9 (CXCL9) and CXCL10, as well as CC chemokine ligand 2 (CCL2) and CCL5, were prominently expressed during acute disease, whereas transcripts for CXCL9, CXCL10, and CCL5 remained elevated during chronic infection. Inflammatory macrophages present within the heart were the primary cellular source of these chemokines following T. cruzi infection. Peak chemokine expression levels coincided with increased gamma interferon expression and inflammation within the heart, suggesting a role for these molecules in both host defense and disease. Indeed, simultaneous treatment of T. cruzi -infected mice with neutralizing antibodies specific for CXCL9 and CXCL10 resulted in an increased parasite burden that was sustained out to 50 days p.i. Antibody targeting either CXCL10 or CCL5 did not change either T. cruzi burden within the heart nor attenuate the severity of cardiac inflammation at any time point examined, while targeting CXCL9 in combination with CXCL10 resulted in increased parasite burden. Collectively, these studies imply that CXCL9 and CXCL10 signaling enhances immune responses following parasite infection. However, antibody targeting of CXCL9 and CXCL10, or CXCL10 alone, or CCL5 alone does not directly modulate the inflammatory response within the heart, suggesting that other proinflammatory factors are able to regulate inflammation in this tissue in response to T. cruzi infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference47 articles.

1. β-Chemokines Enhance Parasite Uptake and Promote Nitric Oxide-Dependent Microbiostatic Activity in Murine Inflammatory Macrophages Infected with Trypanosoma cruzi

2. Interleukin-12 mediates resistance to Trypanosoma cruzi in mice and is produced by murine macrophages in response to live trypomastigotes

3. Beard, C. A., R. A. Wrightsman, and J. E. Manning. 1988. Stage and strain specific expression of the tandemly repeated 90 kDa surface antigen gene family in Trypanosoma cruzi. Mol. Biochem. Parasitol.28:227-234.

4. Brener, Z. 1992. Chagas disease—clinical features: Chagas disease (American trypanosomiasis): its impact on transfusion and clinical medicine. Int. Soc. Blood Trans. Cap.6:81-101.

5. Camargo, M. M., I. C. Almeida, M. E. Pereira, M. A. Ferguson, L. R. Travassos, and R. T. Gazzinelli. 1997. Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzi trypomastigotes initiate the synthesis of proinflammatory cytokines by macrophages. J. Immunol.158:5890-5901.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3