β-Chemokines Enhance Parasite Uptake and Promote Nitric Oxide-Dependent Microbiostatic Activity in Murine Inflammatory Macrophages Infected with Trypanosoma cruzi

Author:

Aliberti Júlio C. S.1,Machado Fabiana S.1,Souto Janeusa T.1,Campanelli Ana P.1,Teixeira Mauro M.2,Gazzinelli Ricardo T.2,Silva João S.1

Affiliation:

1. Department of Immunology, School of Medicine of Ribeirão Preto-USP, Ribeirão Preto-SP,1 and

2. Department of Biochemistry and Immunology, ICB/UFMG, Belo Horizonte-MG,2 Brazil

Abstract

ABSTRACT In the present study, we describe the ability of Trypanosoma cruzi trypomastigotes to stimulate the synthesis of β-chemokines by macrophages. In vivo infection with T. cruzi led to MIP-1α, RANTES, and JE/MCP1 mRNA expression by cells from peritoneal inflammatory exudate. In addition, in vitro infection with T. cruzi resulted in expression of β-chemokine MIP-1α, MIP-1β, RANTES, and JE mRNA by macrophages. The expression of the β-chemokine MIP-1α, MIP-1β, RANTES, and JE proteins by murine macrophages cultured with trypomastigote forms of T. cruzi was confirmed by immunocytochemistry. Interestingly, macrophage infection with T. cruzi also resulted in NO production, which we found to be mediated mainly by β-chemokines. Hence, treatment with anti-β-chemokine-specific neutralizing antibodies partially inhibited NO release by macrophages incubated with T. cruzi parasites. Further, the addition of the exogenous β-chemokines MIP-1α, MIP-1β, RANTES, and JE/MCP-1 induced an increased T. cruzi uptake, leading to enhanced NO production and control of parasite replication in a dose-dependent manner. l -NMMA, a specific inhibitor of the l -arginine–NO pathway, caused a decrease in NO production and parasite killing when added to cultures of macrophages stimulated with β-chemokines. Among the β-chemokines tested, JE was more potent in inhibiting parasite growth, although it was much less efficient than gamma interferon (IFN-γ). Nevertheless, JE potentiates parasite killing by macrophages incubated with low doses of IFN-γ. Together, these results suggest that in addition to their chemotactic activity, murine β-chemokines may also contribute to enhancing parasite uptake and promoting control of parasite replication in macrophages and may play a role in resistance to T. cruzi infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3