Early steps in carotenoid biosynthesis: sequences and transcriptional analysis of the crtI and crtB genes of Rhodobacter sphaeroides and overexpression and reactivation of crtI in Escherichia coli and R. sphaeroides

Author:

Lang H P1,Cogdell R J1,Gardiner A T1,Hunter C N1

Affiliation:

1. Department of Molecular Biology and Biotechnology, Robert Hill Institute for Photosynthesis, University of Sheffield, Western Bank, United Kingdom.

Abstract

In the purple photosynthetic bacterium Rhodobacter sphaeroides, the desaturation of phytoene has already been implicated in the assembly of the light-harvesting 2 complex (H.P. Lang and C.N. Hunter, Biochem. J. 298:197-205, 1994). The phytoene synthase and desaturase enzymes mediate the first steps specific for carotenoid biosynthesis up to and including the synthesis of the colored carotenoid neurosporene. In this report, we present the DNA and deduced amino acid sequences of the genes encoding these proteins, namely, crtB and crtI, from R. sphaeroides and present evidence for the existence of a crtIB operon. Both genes have been shown to possess putative puc and puf operon-like promoter sequences, and oxygen regulation and the point of initiation of the crtI transcript have been demonstrated. The complete crtI gene has been overexpressed in Escherichia coli and R. sphaeroides and shown to catalyze three desaturations of phytoene to give neurosporene. This activity was shown to be ATP dependent, and the cofactor requirement was investigated by using a spectroscopic assay for in vitro carotenogenic activity. Although the crtI and crtB genes have been sequenced from a number of different organisms, the transcriptional organization and regulation of these genes have not been analyzed in detail. In this report, we have located the transcription initiation point and have shown that R. sphaeroides possesses an oxygen-regulated CrtI-type phytoene desaturase gene that forms a transcriptional operon with crtB.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3