Genes and Pathway Reactions Related to Carotenoid Biosynthesis in Purple Bacteria

Author:

Sandmann Gerhard1

Affiliation:

1. Biosynthesis Group, Institute for Molecular Biosciences, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, D-60438 Frankfurt, Germany

Abstract

In purple bacteria, the genes of the carotenoid pathways are part of photosynthesis gene clusters which were distributed among different species by horizontal gene transfer. Their close organisation facilitated the first-time cloning of carotenogenic genes and promoted the molecular investigation of spheroidene and spirilloxanthin biosynthesis. This review highlights the cloning of the spheroidene and spirilloxanthin pathway genes and presents the current knowledge on the enzymes involved in the carotenoid biosynthesis of purple sulphur and non-sulphur bacteria. Mostly, spheroidene or spirilloxanthin biosynthesis exists in purple non-sulphur bacteria but both pathways operate simultaneously in Rubrivivax gelatinosus. In the following years, genes from other bacteria including purple sulphur bacteria with an okenone pathway were cloned. The individual steps were investigated by kinetic studies with heterologously expressed pathway genes which supported the establishment of the reaction mechanisms. In particular, the substrate and product specificities revealed the sequential order of the speroidene and spiriloxanthin pathways as well as their interactions. Information on the enzymes involved revealed that the phytoene desaturase determines the type of pathway by the formation of different products. By selection of mutants with amino acid exchanges in the putative substrate-binding site, the neurosporene-forming phytoene desaturase could be changed into a lycopene-producing enzyme and vice versa. Concerning the oxygen groups in neurosporene and lycopene, the tertiary alcohol group at C1 is formed from water and not by oxygenation, and the C2 or C4 keto groups are inserted differently by an oxygen-dependent or oxygen-independent ketolation reaction, respectively.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3