Polymorphism within the herpes simplex virus (HSV) ribonucleotide reductase large subunit (ICP6) confers type specificity for recognition by HSV type 1-specific cytotoxic T lymphocytes

Author:

Salvucci L A1,Bonneau R H1,Tevethia S S1

Affiliation:

1. Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033.

Abstract

A panel of herpes simplex virus type 1 (HSV-1)-specific, CD8+, major histocompatibility complex class I (H-2Kb)-restricted cytotoxic T-lymphocyte (CTL) clones was derived from HSV-1-immunized C57BL/6 (H-2b) mice in order to identify the HSV-1 CTL recognition epitope(s) which confers type specificity. HSV-1 x HSV-2 intertypic recombinants were used to narrow the region encoding potential CTL recognition epitopes to within 0.51 to 0.58 map units of the HSV-1 genome. Using an inhibitor of viral DNA synthesis and an ICP6 deletion mutant, the large subunit of ribonucleotide reductase (ICP6, RR1) was identified as a target protein for these type-specific CTL. Potential CTL recognition epitopes within RR1 were located on the basis of the peptide motif predicted to bind to the MHC class I H-2Kb molecule. A peptide corresponding to residues 822 to 829 of RR1 was shown to confer susceptibility on H-2Kb-expressing target cells to lysis by the type 1-specific CTL. On the basis of a comparison of the HSV-1 RR1 epitope (residues 822 to 829) with the homologous sequence of HSV-2 RR1 (residues 828 to 836) and by the use of amino acid substitutions within synthetic peptides, we identified HSV-1 residue 828 as being largely responsible for the type specificity exhibited by HSV-1-specific CTL. This HSV-1 RR1 epitope, when expressed in recombinant simian virus 40 large T antigen in primary C57BL/6 cells, was recognized by the HSV-1 RR1-specific CTL clones. These results indicate that an early HSV protein with enzymatic activity provides a target for HSV-specific CTL and that type specificity is dictated largely by a single amino acid.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3