New Genera of RNA Viruses in Subtropical Seawater, Inferred from Polymerase Gene Sequences

Author:

Culley Alexander I.1,Steward Grieg F.1

Affiliation:

1. Department of Oceanography, University of Hawaii at Mānoa, 1000 Pope Road, Marine Sciences Building, Honolulu, Hawaii 96822

Abstract

ABSTRACT Viruses are an integral component of the marine food web, contributing to the disease and mortality of essentially every type of marine life, yet the diversity of viruses in the sea, especially those with RNA genomes, remains very poorly characterized. Isolates of RNA-containing viruses that infect marine plankton are still rare, and the only cultivation-independent surveys of RNA viral diversity reported so far were conducted for temperate coastal waters of British Columbia. Here, we report on our improvements to a previously used protocol to investigate the diversity of marine picorna-like viruses and our results from applying this protocol in subtropical waters. The original protocol was simplified by using direct filtration, rather than tangential flow filtration, to harvest viruses from seawater, and new degenerate primers were designed to amplify a fragment of the RNA-dependent RNA polymerase gene by reverse transcription-PCR from RNA extracted from the filters. Whereas the original protocol was unsuccessful in a preliminary test, the new protocol resulted in amplification of picorna-like virus sequences in every sample of subtropical and temperate coastal seawater assayed. These polymerase sequences formed a diverse, but monophyletic cluster along with other sequences amplified previously from seawater and sequences from isolates infecting marine protists. Phylogenetic analysis suggested that our sequences represent at least five new genera and 24 new species of RNA viruses. These results contribute to our understanding of RNA virus diversity and suggest that picorna-like viruses are a source of mortality for a wide variety of marine protists.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3