Isolation and Characterization of Carnocyclin A, a Novel Circular Bacteriocin Produced by Carnobacterium maltaromaticum UAL307

Author:

Martin-Visscher Leah A.1,van Belkum Marco J.1,Garneau-Tsodikova Sylvie1,Whittal Randy M.1,Zheng Jing1,McMullen Lynn M.2,Vederas John C.1

Affiliation:

1. Department of Chemistry

2. Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada

Abstract

ABSTRACT Carnobacterium maltaromaticum UAL307, isolated from fresh pork, exhibits potent activity against a number of gram-positive organisms, including numerous Listeria species. Three bacteriocins were isolated from culture supernatant, and using matrix-assisted laser desorption ionization-time of flight mass spectrometry and Edman sequencing, two of these bacteriocins were identified as piscicolin 126 and carnobacteriocin BM1, both of which have previously been described. The remaining bacteriocin, with a molecular mass of 5,862 Da, could not be sequenced by traditional methods, suggesting that the peptide was either cyclic or N-terminally blocked. This bacteriocin showed remarkable stability over a wide temperature and pH range and was unaffected by a variety of proteases. After digestion with trypsin and α-chymotrypsin, the peptide was de novo sequenced by tandem mass spectrometry and a linear sequence deduced, consisting of 60 amino acids. Based on this sequence, the molecular mass was predicted to be 5,880 Da, 18 units higher than the observed molecular mass, which suggested that the peptide has a cyclic structure. Identification of the genetic sequence revealed that this peptide is circular, formed by a covalent linkage between the N and C termini following cleavage of a 4-residue peptide leader sequence. The results of structural studies suggest that the peptide is highly structured in aqueous conditions. This bacteriocin, named carnocyclin A, is the first reported example of a circular bacteriocin produced by Carnobacterium spp.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3