Clonal analysis of delayed karyotypic abnormalities and gene mutations in radiation-induced genetic instability

Author:

Grosovsky A J1,Parks K K1,Giver C R1,Nelson S L1

Affiliation:

1. Biomedical Sciences, Graduate Program, University of California, Riverside, USA. Grosovsk@mail.ucr.edu

Abstract

Many tumors exhibit extensive chromosomal instability, but karyotypic alterations will be significant in carcinogenesis only by influencing specific oncogenes or tumor suppressor loci within the affected chromosomal segments. In this investigation, the specificity of chromosomal rearrangements attributable to radiation-induced genomic instability is detailed, and a qualitative and quantitative correspondence with mutagenesis is demonstrated. Chromosomal abnormalities preferentially occurred near the site of prior rearrangements, resulting in complex abnormalities, or near the centromere, resulting in deletion or translocation of the entire chromosome arm, but no case of an interstitial chromosomal deletion was observed. Evidence for chromosomal instability in the progeny of irradiated cells also included clonal karyotypic heterogeneity. The persistence of instability was demonstrated for at least 80 generations by elevated mutation rates at the heterozygous, autosomal marker locus tk. Among those TK- mutants that showed a loss of heterozygosity, a statistically significant increase in mutation rate was observed only for those in which the loss of heterozygosity encompasses the telomeric region. This mutational specificity corresponds with the prevalence of terminal deletions, additions, and translocations, and the absence of interstitial deletions, in karyotypic analysis. Surprisingly, the elevated rate of TK- mutations is also partially attributable to intragenic base substitutions and small deletions, and DNA sequence analysis of some of these mutations is presented. Complex chromosomal abnormalities appear to be the most significant indicators of a high rate of persistent genetic instability which correlates with increased rates of both intragenic and chromosomal-scale mutations at tk.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3