Transcriptomes of Wet Skin Biopsies Predict Outcomes after Ionizing Radiation Exposure with Potential Dosimetric Applications in a Mouse Model

Author:

Alkhalil Abdulnaser,Clifford John,Miller Stacyann M.,Gautam Aarti,Jett Marti,Hammamieh Rasha,Moffatt Lauren T.,Shupp Jeffrey W.

Abstract

Countermeasures for radiation diagnosis, prognosis, and treatment are trailing behind the proliferation of nuclear energy and weaponry. Radiation injury mechanisms at the systems biology level are not fully understood. Here, mice skin biopsies at h2, d4, d7, d21, and d28 after exposure to 1, 3, 6, or 20 Gy whole-body ionizing radiation were evaluated for the potential application of transcriptional alterations in radiation diagnosis and prognosis. Exposure to 20 Gy was lethal by d7, while mice who received 1, 3, or 6 Gy survived the 28-day time course. A Sammon plot separated samples based on survival and time points (TPs) within lethal (20 Gy) and sublethal doses. The differences in the numbers, regulation mode, and fold change of significantly differentially transcribed genes (SDTGs, p < 0.05 and FC > 2) were identified between lethal and sublethal doses, and down and upregulation dominated transcriptomes during the first post-exposure week, respectively. The numbers of SDTGs and the percentages of upregulated ones revealed stationary downregulation post-lethal dose in contrast to responses to sublethal doses which were dynamic and largely upregulated. Longitudinal up/downregulated SDTGs ratios suggested delayed and extended responses with increasing IR doses in the sublethal range and lethal-like responses in late TPs. This was supported by the distributions of common and unique genes across TPs within each dose. Several genes with potential dosimetric marker applications were identified. Immune, fibrosis, detoxification, hematological, neurological, gastric, cell survival, migration, and proliferation radiation response pathways were identified, with the majority predicted to be activated after sublethal and inactivated after lethal exposures, particularly during the first post-exposure week.

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3