Role of an Expanded Inositol Transporter Repertoire in Cryptococcus neoformans Sexual Reproduction and Virulence

Author:

Xue Chaoyang12,Liu Tongbao2,Chen Lydia1,Li Wenjun1,Liu Iris3,Kronstad James W.3,Seyfang Andreas4,Heitman Joseph1

Affiliation:

1. Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA

2. Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA

3. Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada

4. Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA

Abstract

ABSTRACT Cryptococcus neoformans and Cryptococcus gattii are globally distributed human fungal pathogens and the leading causes of fungal meningitis. Recent studies reveal that myo -inositol is an important factor for fungal sexual reproduction. That C. neoformans can utilize myo -inositol as a sole carbon source and the existence of abundant inositol in the human central nervous system suggest that inositol is important for Cryptococcus development and virulence. In accord with this central importance of inositol, an expanded myo -inositol transporter ( ITR ) gene family has been identified in Cryptococcus . This gene family contains two phylogenetically distinct groups, with a total of 10 or more members in C. neoformans and at least six members in the sibling species C. gattii . These inositol transporter genes are differentially expressed under inositol-inducing conditions based on quantitative real-time PCR analyses. Expression of ITR genes in a Saccharomyces cerevisiae itr1 itr2 mutant lacking inositol transport can complement the slow-growth phenotype of this strain, confirming that ITR genes are bona fide inositol transporters. Gene mutagenesis studies reveal that the Itr1 and Itr1A transporters are important for myo -inositol stimulation of mating and that functional redundancies among the myo -inositol transporters likely exist. Deletion of the inositol 1-phosphate synthase gene INO1 in an itr1 or itr1a mutant background compromised virulence in a murine inhalation model, indicating the importance of inositol sensing and acquisition for fungal infectivity. Our study provides a platform for further understanding the roles of inositol in fungal physiology and virulence. IMPORTANCE Cryptococcus neoformans is an AIDS-associated human fungal pathogen that causes over 1 million cases of meningitis annually and is the leading cause of fungal meningitis in immunosuppressed patients. The initial cryptococcal infection is caused predominantly via inhalation of sexual spores or desiccated yeast cells from the environment. How this fungus completes its sexual cycle and produces infectious spores in nature and why it frequently infects the central nervous system to cause fatal meningitis are critical questions that remain to be understood. In this study, we demonstrate that inositol acquisition is important not only for fungal sexual reproduction but also for fungal virulence. We identified an expanded inositol transporter gene family that contains over 10 members, important for both fungal sexual reproduction and virulence. Our work contributes to our understanding of how fungi respond to the environmental inositol availability and its impact on sexual reproduction and virulence.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3