Ubiquitin Degradation of the AICAR Transformylase/IMP Cyclohydrolase Ade16 Regulates the Sexual Reproduction of Cryptococcus neoformans

Author:

Han Liantao1,Wu Yujuan1,Xiong Sichu1,Liu Tongbao12ORCID

Affiliation:

1. State Key Laboratory of Resource Insects, Southwest University Medical Research Institute, Chongqing 400715, China

2. Jinfeng Laboratory, Chongqing 401329, China

Abstract

F-box protein is a key protein of the SCF E3 ubiquitin ligase complex, responsible for substrate recognition and degradation through specific interactions. Previous studies have shown that F-box proteins play crucial roles in Cryptococcus sexual reproduction. However, the molecular mechanism by which F-box proteins regulate sexual reproduction in C. neoformans is unclear. In the study, we discovered the AICAR transformylase/IMP cyclohydrolase Ade16 as a substrate of Fbp1. Through protein interaction and stability experiments, we demonstrated that Ade16 is a substrate for Fbp1. To examine the role of ADE16 in C. neoformans, we constructed the iADE16 strains and ADE16OE strains to analyze the function of Ade16. Our results revealed that the iADE16 strains had a smaller capsule and showed growth defects under NaCl, while the ADE16OE strains were sensitive to SDS but not to Congo red, which is consistent with the stress phenotype of the fbp1Δ strains, indicating that the intracellular protein expression level after ADE16 overexpression was similar to that after FBP1 deletion. Interestingly, although iADE16 strains can produce basidiospores normally, ADE16OE strains can produce mating mycelia but not basidiospores after mating, which is consistent with the fbp1Δmutant strains, suggesting that Fbp1 is likely to regulate the sexual reproduction of C. neoformans through the modulation of Ade16. A fungal nuclei development assay showed that the nuclei of the ADE16OE strains failed to fuse in the bilateral mating, indicating that Ade16 plays a crucial role in the regulation of meiosis during mating. In summary, our findings have revealed a new determinant factor involved in fungal development related to the post-translational regulation of AICAR transformylase/IMP cyclohydrolase.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing, China

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3