Identification of a Clostridium perfringens Enterotoxin Region Required for Large Complex Formation and Cytotoxicity by Random Mutagenesis

Author:

Kokai-Kun John F.1,Benton Kimberly1,Wieckowski Eva U.1,McClane Bruce A.1

Affiliation:

1. Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261

Abstract

ABSTRACT Clostridium perfringens enterotoxin (CPE), a single polypeptide of 319 amino acids, has a unique multistep mechanism of action. In the first step, CPE binds to claudin proteins and/or a 50-kDa eukaryotic membrane protein receptor, forming a small (∼90-kDa) complex. This small complex apparently then associates with a 70-kDa eukaryotic membrane protein, resulting in formation of a large complex that induces the onset of membrane permeability alterations. To better define the boundaries of CPE functional regions and to identify specific amino acid residues involved in various steps of CPE action, in this study we subjected the cloned cpe gene to random mutagenesis in XL-1 Red strains of Escherichia coli . Seven CPE random mutants with reduced cytotoxicity for Vero cells were phenotypically characterized for the ability to complete each step in CPE action. Five of these seven recombinant CPE (rCPE) random mutants (G49D, S59L, R116S, R137G, and S167P) exhibited binding characteristics similar to those of rCPE or native CPE, while the Y310C and W226Stop mutants showed reduced binding and no binding, respectively, to brush border membranes. Interestingly, two completely nontoxic mutants (G49D and S59L) were able to bind and form small complex but they did not mediate any detectable large complex formation. Another strongly attenuated mutant, R116S, formed reduced amounts of an anomalously migrating large complex. Collectively, these results provide further support for large complex formation being an essential step in CPE action and also identify the CPE region ranging from residues ∼45 to 116 as important for large complex formation. Finally, we also report that limited removal of extreme N-terminal CPE sequences, which may occur in vivo during disease, stimulates cytotoxic activity by enhancing large complex formation.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3