Inhibition of diastatic yeasts by Saccharomyces killer toxins to prevent hyperattenuation during brewing

Author:

Zhong Victor1,Ketchum Nicholas2,Mackenzie James K.1,Garcia Ximena1,Rowley Paul A.13ORCID

Affiliation:

1. Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA

2. Rhinegeist Brewery, Cincinnati, Ohio, USA

3. Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA

Abstract

ABSTRACT Secondary fermentation in beer can result in undesirable consequences, such as off-flavors, increased alcohol content, hyperattenuation, gushing, and the spontaneous explosion of packaging. Strains of Saccharomyces cerevisiae var. diastaticus are a major contributor to such spoilage due to their production of extracellular glucoamylase enzyme encoded by the STA1 gene. Saccharomyces yeasts can naturally produce antifungal proteins named “killer” toxins that inhibit the growth of competing yeasts. Challenging diastatic yeasts with killer toxins revealed that 91% of strains are susceptible to the K1 killer toxin produced by S. cerevisiae . Screening of 192 killer yeasts identified novel K2 toxins that could inhibit all K1-resistant diastatic yeasts. Variant K2 killer toxins were more potent than the K1 and K2 toxins, inhibiting 95% of diastatic yeast strains tested. Brewing trials demonstrated that adding killer yeast during a simulated diastatic contamination event could prevent hyperattenuation. Currently, most craft breweries can only safeguard against diastatic yeast contamination by good hygiene and monitoring for the presence of diastatic yeasts. The detection of diastatic yeasts will often lead to the destruction of contaminated products and the aggressive decontamination of brewing facilities. Using killer yeasts in brewing offers an approach to safeguard against product loss and potentially remediate contaminated beer. IMPORTANCE The rise of craft brewing means that more domestic beer in the marketplace is being produced in facilities lacking the means for pasteurization, which increases the risk of microbial spoilage. The most damaging spoilage yeasts are “diastatic” strains of Saccharomyces cerevisiae that cause increased fermentation (hyperattenuation), resulting in unpalatable flavors such as phenolic off-flavor, as well as over-carbonation that can cause exploding packaging. In the absence of a pasteurizer, there are no methods available that would avert the loss of beer due to contamination by diastatic yeasts. This manuscript has found that diastatic yeasts are sensitive to antifungal proteins named “killer toxins” produced by Saccharomyces yeasts, and in industrial-scale fermentation trials, killer yeasts can remediate diastatic yeast contamination. Using killer toxins to prevent diastatic contamination is a unique and innovative approach that could prevent lost revenue to yeast spoilage and save many breweries the time and cost of purchasing and installing a pasteurizer.

Funder

HHS | National Institutes of Health

National Science Foundation

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3