Sfp1 Plays a Key Role in Yeast Ribosome Biogenesis

Author:

Fingerman Ian1,Nagaraj Vijayalakshmi1,Norris David1,Vershon Andrew K.1

Affiliation:

1. Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854

Abstract

ABSTRACT Sfp1, an unusual zinc finger protein, was previously identified as a gene that, when overexpressed, imparted a nuclear localization defect. sfp1 cells have a reduced size and a slow growth phenotype. In this study we show that SFP1 plays a role in ribosome biogenesis. An sfp1 strain is hypersensitive to drugs that inhibit translational machinery. sfp1 strains also have defects in global translation as well as defects in rRNA processing and 60S ribosomal subunit export. Microarray analysis has previously shown that ectopically expressed SFP1 induces the transcription of a large subset of genes involved in ribosome biogenesis. Many of these induced genes contain conserved promoter elements (RRPE and PAC). Our results show that activation of transcription from a reporter construct containing two RRPE sites flanking a single PAC element is SFP1 dependent. However, we have been unable to detect direct binding of the protein to these elements. This suggests that regulation of genes containing RRPEs is dependent upon Sfp1 but that Sfp1 may not directly bind to these conserved promoter elements; rather, activation may occur through an indirect mechanism.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3