Transcription Factors Mcm1 and Sfp1 May Affect [PSI+] Prion Phenotype by Altering the Expression of the SUP35 Gene

Author:

Matveenko Andrew G.1ORCID,Mikhailichenko Anastasiia S.1,Drozdova Polina B.2ORCID,Zhouravleva Galina A.13ORCID

Affiliation:

1. Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia

2. Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia

3. Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia

Abstract

Mcm1 is an essential Q/N-rich transcription factor. Q/N-rich proteins interact with each other, and many affect the [PSI+] prion formed by the translation termination factor Sup35 (eRF3). We found that transient MCM1 overexpression increased nonsense suppression in [PSI+] strains and SUP35 transcription. As we had discovered similar effects of another Q/N-rich transcription factor, Sfp1, here we focus on the roles of Mcm1 and Sfp1 in SUP35 expression, as well as on the effects of Sfp1 on the expression of the gene encoding another release factor, Sup45 (eRF1). Mutations in the SUP35 promoter showed that none of the potential Mcm1 binding sites affected the Sup35 protein level or nonsense suppression, even during MCM1 overexpression. Mcm1 itself neither formed aggregates in vivo nor affected Sup35 aggregation. In contrast, a mutation in the Sfp1-binding site decreased Sup35 production and [PSI+] toxicity of excess Sfp1. Mutation of the Sfp1 binding site in the SUP45 promoter lowered SUP45 expression and increased nonsense suppression even more drastically. Our data indicate that the mechanisms of Mcm1 and Sfp1 action differ. While Mcm1 seems unlikely to directly regulate SUP35 expression, Sfp1 appears to act through its binding sites and to directly activate SUP35 expression, which in turn may influence the [PSI+] prion phenotype and toxicity.

Funder

Saint-Petersburg State University

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3