Multilocus Sequence Typing of Oenococcus oeni : Detection of Two Subpopulations Shaped by Intergenic Recombination

Author:

Bilhère Eric1,Lucas Patrick M.1,Claisse Olivier1,Lonvaud-Funel Aline1

Affiliation:

1. UMR 1219, Université de Bordeaux, INRA, ISVV, Talence 33405, France

Abstract

ABSTRACT Oenococcus oeni is the acidophilic lactic acid bacterial species most frequently associated with malolactic fermentation of wine. Since the description of the species (formerly Leuconostoc oenos ), characterization of indigenous strains and industrially produced cultures by diverse typing methods has led to divergent conclusions concerning the genetic diversity of strains. In the present study, a multilocus sequence typing (MLST) scheme based on the analysis of eight housekeeping genes was developed and tested on a collection of 43 strains of diverse origins. The eight targeted loci were successfully amplified and sequenced for all isolates. Only three to 11 different alleles were detected for these genes. The average nucleotide diversity also was rather limited (0.0011 to 0.0370). Despite this limited allelic diversity, the combination of alleles of each strain disclosed 34 different sequence types, which denoted a significant genotypic diversity. A phylogenetic analysis of the concatenated sequences showed that all strains form two well distinct groups of 28 and 15 strains. Interestingly, the same groups were defined by pulsed-field gel electrophoresis, although this method targets different genetic variations. A minimum spanning tree analysis disclosed very few and small clonal complexes. In agreement, statistical analyses of MLST data suggest that recombination events were important during O. oeni evolution and contributed to the wide dissemination of alleles among strains. Taken together, our results showed that MLST is more efficient than pulsed-field gel electrophoresis for typing O. oeni strains, and they provided a picture of the O. oeni population that explains some conflicting results previously obtained.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3