Affiliation:
1. Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
Abstract
ABSTRACT
The linear polymer polyphosphate (poly-P) is present across all three domains of life and serves diverse physiological functions. The enzyme polyphosphate kinase (Ppk) is responsible for poly-P synthesis, whereas poly-P degradation is carried out by the enzyme exopolyphosphatase (Ppx). In many
Lactobacillaceae
, the Ppk-encoding gene (
ppk
) is found clustered together with two genes encoding putative exopolyphosphatases (
ppx1
and
ppx2
) each having different domain compositions, with the gene order
ppx1-ppk-ppx2
. However, the specific function of these
ppx
genes remains unexplored. An in-frame deletion of
ppx1
in
Lacticaseibacillus paracasei
BL23 resulted in bacteria unable to accumulate poly-P, whereas the disruption of
ppx2
did not affect poly-P synthesis. The expression of
ppk
was not altered in the Δ
ppx1
strain, and poly-P synthesis in this strain was only restored by expressing
ppx1
in
trans
. Moreover, no poly-P synthesis was observed when
ppk
was expressed from a plasmid in the Δ
ppx1
strain. Purified Ppx2 exhibited
in vitro
exopolyphosphatase activity, whereas no
in vitro
enzymatic activity could be demonstrated for Ppx1. This observation corresponds with the absence in Ppx1 of conserved motifs essential for catalysis found in characterized exopolyphosphatases. Furthermore, assays with purified Ppk and Ppx1 evidenced that Ppx1 enhanced Ppk activity. These results demonstrate that Ppx1 is essential for poly-P synthesis in
Lc. paracasei
and have unveiled, for the first time, an unexpected role of Ppx1 exopolyphosphatase in poly-P synthesis.
IMPORTANCE
Poly-P is a pivotal molecular player in bacteria, participating in a diverse array of processes ranging from stress resilience to pathogenesis while also serving as a functional component in probiotic bacteria. The synthesis of poly-P is tightly regulated, but the underlying mechanisms remain incompletely elucidated. Our study sheds light on the distinctive role played by the two exopolyphosphatases (Ppx) found in the
Lactobacillaceae
bacterial group, of relevance in food and health. This particular group is noteworthy for possessing two Ppx enzymes, supposedly involved in poly-P degradation. Remarkably, our investigation uncovers an unprecedented function of Ppx1 in
Lacticaseibacillus paracasei
, where its absence leads to the total cessation of poly-P synthesis, paralleling the impact observed upon eliminating the poly-P forming enzyme, poly-P kinase. Unlike the anticipated role as a conventional exopolyphosphatase, Ppx1 demonstrates an unexpected function. Our results added a layer of complexity to our understanding of poly-P dynamics in bacteria.
Funder
Ministry of Science, Innovation and Universities from Spain
Publisher
American Society for Microbiology