Two exopolyphosphatases with distinct molecular architectures and substrate specificities from the thermophilic green-sulfur bacterium Chlorobium tepidum TLS

Author:

Albi Tomás1,Serrano Aurelio1

Affiliation:

1. Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, CSIC-Universidad de Sevilla, Spain

Abstract

The genome of the thermophilic green-sulfur bacterium Chlorobium tepidum TLS possesses two genes encoding putative exopolyphosphatases (PPX; EC 3.6.1.11), namely CT0099 (ppx1, 993 bp) and CT1713 (ppx2, 1557 bp). The predicted polypeptides of 330 and 518 aa residues are Ppx-GppA phosphatases of different domain architectures – the largest one has an extra C-terminal HD domain – which may represent ancient paralogues. Both ppx genes were cloned and overexpressed in Escherichia coli BL21(DE3). While CtPPX1 was validated as a monomeric enzyme, CtPPX2 was found to be a homodimer. Both PPX homologues were functional, K+-stimulated phosphohydrolases, with an absolute requirement for divalent metal cations and a marked preference for Mg2+. Nevertheless, they exhibited remarkably different catalytic specificities with regard to substrate classes and chain lengths. Even though both enzymes were able to hydrolyse the medium-size polyphosphate (polyP) P13–18 (polyP mix with mean chain length of 13–18 phosphate residues), CtPPX1 clearly reached its highest catalytic efficiency with tripolyphosphate and showed substantial nucleoside triphosphatase (NTPase) activity, while CtPPX2 preferred long-chain polyPs (>300 Pi residues) and did not show any detectable NTPase activity. These catalytic features, taken together with the distinct domain architectures and molecular phylogenies, indicate that the two PPX homologues of Chl. tepidum belong to different Ppx-GppA phosphatase subfamilies that should play specific biochemical roles in nucleotide and polyP metabolisms. In addition, these results provide an example of the remarkable functional plasticity of the Ppx-GppA phosphatases, a family of proteins with relatively simple structures that are widely distributed in the microbial world.

Funder

EU FEDER

Andalusian Regional Government

Spanish Government

Publisher

Microbiology Society

Subject

Microbiology

Reference66 articles.

1. Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death

2. The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein;Akiyama;J Biol Chem,1992

3. An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon;Akiyama;J Biol Chem,1993

4. [10] Assay of inorganic phosphate, total phosphate and phosphatases

5. The HD domain defines a new superfamily of metal-dependent phosphohydrolases

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3