Analysis of the CtrA Pathway in Magnetospirillum Reveals an Ancestral Role in Motility in Alphaproteobacteria

Author:

Greene Shannon E.1,Brilli Matteo2,Biondi Emanuele G.3,Komeili Arash1

Affiliation:

1. Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA

2. INRIA Rhone-Alpes and Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Lyon 1, Villeurbanne, France

3. Interdisciplinary Research Institute, CNRS-Univ. Lille1-Lille2, Villeneuve d'Ascq, France

Abstract

ABSTRACT Developmental events across the prokaryotic life cycle are highly regulated at the transcriptional and posttranslational levels. Key elements of a few regulatory networks are conserved among phylogenetic groups of bacteria, although the features controlled by these conserved systems are as diverse as the organisms encoding them. In this work, we probed the role of the CtrA regulatory network, conserved throughout the Alphaproteobacteria , in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1, which possesses unique intracellular organization and compartmentalization. While we have shown that CtrA in AMB-1 is not essential for viability, it is required for motility, and its putative phosphorylation state dictates the ability of CtrA to activate the flagellar biosynthesis gene cascade. Gene expression analysis of strains expressing active and inactive CtrA alleles points to the composition of the extended CtrA regulon, including both direct and indirect targets. These results, combined with a bioinformatic study of the AMB-1 genome, enabled the prediction of an AMB-1-specific CtrA binding site. Further, phylogenetic studies comparing CtrA sequences from alphaproteobacteria in which the role of CtrA has been experimentally examined reveal an ancestral role of CtrA in the regulation of motility and suggest that its essential functions in other alphaproteobacteria were acquired subsequently.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3