Sinorhizobium melilotiFcrX coordinates cell cycle and division during free-living growth and symbiosis

Author:

Dendene Sara,Xue Shuanghong,Nicoud Quentin,Valette Odile,Frascella Angela,Bonnardel Anna,Le Bars Romain,Bourge Mickaël,Mergaert Peter,Brilli MatteoORCID,Alunni Benoît,Biondi Emanuele G.

Abstract

ABSTRACTSinorhizobium melilotiis a soil bacterium that establishes a symbiosis within root nodules of legumes (Medicago sativa, for example) where it fixes atmospheric nitrogen into ammonia and obtains in return carbon sources and other nutrients. In this symbiosis,S. melilotiundergoes a drastic cellular change leading to a terminal differentiated form (called bacteroid) characterized by genome endoreduplication, increase of cell size and high membrane permeability. The bacterial cell cycle (mis)regulation is at the heart of this differentiation process. In free-living cells, the master regulator CtrA ensures the progression of cell cycle by activating cell division (controlled by the tubulin-like protein FtsZ) and simultaneously inhibiting supernumerary DNA replication, while on the other hand the downregulation of CtrA and FtsZ is essential for bacteroid differentiation during symbiosis, preventing endosymbiont division and permitting genome endoreduplication. Little is known inS. melilotiabout regulators of CtrA and FtsZ, as well as the processes that control bacteroid development. Here, we combine cell biology, biochemistry and bacterial genetics approaches to understand the function(s) of FcrX, a new factor that controls both CtrA and FtsZ, in free-living growth and in symbiosis. Depletion of the essential genefcrXled to abnormally high levels of FtsZ and CtrA and minicell formation. Using multiple complementary techniques, we showed that FcrX is able to interact physically with FtsZ and CtrA. Moreover, its transcription is controlled by CtrA itself and displays an oscillatory pattern in the cell cycle. We further showed that, despite a weak homology with FliJ-like proteins, only FcrX proteins from closely-related species are able to complementS. meliloti fcrXfunction. Finally, deregulation of FcrX showed abnormal symbiotic behaviors in plants suggesting a putative role of this factor during bacteroid differentiation. In conclusion, FcrX is the first known cell cycle regulator that acts directly on both, CtrA and FtsZ, thereby controlling cell cycle, division and symbiotic differentiation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3