Affiliation:
1. Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
2. Institute of Molecular Systems Biology, ETH-Zürich, Zürich, Switzerland
Abstract
ABSTRACT
In several Gram-positive bacterial species, the global transcriptional regulatory protein CodY adjusts the expression of many metabolic genes, apparently in response to changes in the pools of specific metabolites, i.e., the branched-chain amino acids (BCAAs) isoleucine, leucine, and valine (ILV) and the nucleoside triphosphate GTP. CodY not only responds to these metabolites as measured
in vitro
but also regulates the genes that direct their synthesis. We have constructed a set of strains lacking binding sites for the CodY protein in
cis
at loci coding for the ILV biosynthetic machinery, effectively overexpressing these genes in an attempt to modulate the ILV input signal to CodY. Metabolite analyses of strains derepressed for genes needed for ILV synthesis revealed more than a 6-fold increase in the valine pool and a 2-fold increase in the isoleucine and leucine pools. Accumulation of the branched-chain amino acids was accompanied by a 24-fold induction of the
bkd
operon (required for branched-chain fatty acid synthesis) and 6-fold hyperrepression of the CodY-regulated
yhdG
and
yufN
genes, demonstrating that CodY perceives intracellular fluctuations in at least one if its input signals. We conclude that changes in the rate of endogenous ILV synthesis serve as an important signal for CodY-mediated gene regulation.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献