Molecular Basis for Bacterial Growth on Citrate or Malonate

Author:

Dimroth Peter1

Affiliation:

1. Institute of Microbiology, ETH Zurich, Schmelzbergstrasse 7, CH-8092 Zurich, Switzerland

Abstract

Environmental citrate or malonate is degraded by a variety of aerobic or anaerobic bacteria. For selected examples, the genes encoding the specific enzymes of the degradation pathway are described together with the encoded proteins and their catalytic mechanisms. Aerobic bacteria degrade citrate readily by the basic enzyme equipment of the cell if a specific transporter for citrate is available. Anaerobic degradation of citrate in Klebsiella pneumoniae requires the so-called substrate activation module to convert citrate into its thioester with the phosphoribosyl dephospho-CoA prosthetic group of citrate lyase. The citryl thioester is subsequently cleaved into oxaloacetate and the acetyl thioester, from which a new citryl thioester is formed as the turnover continues. The degradation of malonate likewise includes a substrate activation module with a phosphoribosyl dephospho-CoA prosthetic group. The machinery gets ready for turnover after forming the acetyl thioester with the prosthetic group. The acetyl residue is then exchanged by a malonyl residue, which is easily decarboxylated with the regeneration of the acetyl thioester. This equipment suffices for aerobic growth on malonate, since ATP is produced via the oxidation of acetate. Anaerobic growth on citrate or malonate, however, depends on additional enzymes of a so-called energy conservation module. This allows the conversion of decarboxylation energy into an electrochemical gradient of Na + ions. In citrate-fermenting K. pneumoniae , the Na + gradient is formed by the oxaloacetate decarboxylase and mainly used to drive the active transport of citrate into the cell. To use this energy source for this purpose is possible, since ATP is generated by substrate phosphorylation in the well-known sequence from pyruvate to acetate. In the malonate-fermenting bacterium Malonomonas rubra , however, no reactions for substrate level phosphorylation are available and the Na + gradient formed in the malonate decarboxylation reaction must therefore be used as the driving force for ATP synthesis.

Publisher

American Society for Microbiology

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3