Author:
Patton J T,Davis N L,Wertz G W
Abstract
Genomic replication of the negative-strand RNA viruses is dependent upon protein synthesis. To examine the requirement for protein synthesis in replication, we developed an in vitro system that supports the genome replication of defective interfering particles of the negative-strand rhabdovirus vesicular stomatitis virus (VSV), as a function of protein synthesis (Wertz, J. Virol. 46:513-522, 1983). The system consists of defective interfering nucleocapsid templates and an mRNA-dependent reticulocyte lysate to support protein synthesis. We report here an analysis of the requirement for individual viral proteins in VSV replication. Viral mRNAs purified by hybridization to cDNA clones were used to direct the synthesis of individual proteins in the in vitro system. By this method, it was demonstrated that the synthesis of the VSV nucleocapsid protein, N, alone, resulted in the replication of genome-length RNA by both defective interfering intracellular nucleocapsids and virion-derived nucleocapsids. Neither the viral phosphoprotein, NS, nor the matrix protein, M, supported RNA replication. The amount of RNA replication for a given amount of N protein was the same in reactions in which either all of the VSV proteins or only N protein were synthesized. In addition, RNA replication products synthesized in reactions containing only newly made N protein assembled with the N protein to form nucleocapsids. These results demonstrate that the major nucleocapsid protein (N) can by itself fulfill the requirement for protein synthesis in RNA replication and allow complete replication, i.e., initiation and elongation, as well as encapsidation of genome-length progeny RNA.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
156 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献