Synthesis of Vesicular Stomatitis Virus Negative-Strand RNA In Vitro: Dependence on Viral Protein Synthesis

Author:

Davis Nancy L.1,Wertz Gail W.1

Affiliation:

1. Department of Bacteriology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27514

Abstract

An in vitro system is described which supports the synthesis of vesicular stomatitis virus (VSV) negative-strand RNA. The major components of this system are (i) an mRNA-dependent rabbit reticulocyte lysate to carry out cell-free protein synthesis, (ii) the five VSV mRNAs to program VSV-specific protein synthesis, and (iii) nucleocapsids containing positive- and negative-strand genome-length RNA. The protein products synthesized in the system in response to addition of saturating amounts of the five VSV mRNA's included polypeptides which comigrated in acrylamide gels with the five VSV proteins. Approximately 200 pmol of protein per ml was synthesized during a 90-min reaction. The RNA products synthesized in the system included all five of the VSV mRNA's and, in addition, negative-strand, genome-sense RNA. All of the negative-strand RNA, which represented 2 to 5% of the total RNA product synthesized in vitro, banded in CsCl at the position of nucleocapsids. All of the mature mRNA's made in the system pelleted in CsCl. This technique allowed a clear separation of negative-strand product from the mRNA products and facilitated further analysis of the negative-strand product. The amount of negative-strand product produced in the system was shown to be a function of the amount of concurrent protein synthesis in the system. An increase in the level of protein synthesis led to an increase in the amount of negative-strand RNA synthesized, whereas inhibition of protein synthesis by cycloheximide resulted in a 70% inhibition of negative-strand synthesis. In contrast to the negative-strand RNA product, the amount of transcriptive product was decreased by 50% in the presence of maximum levels of viral protein synthesis. This inhibition was reversed by adding cycloheximide. Characterization of the negative-strand product by Northern blot analysis demonstrated that negative-strand product was being synthesized which hybridized to all five of the VSV mRNA's and, hence, that product representing all of the VSV cistrons was being made. This in vitro system offers an opportunity to study factors involved in the promotion of VSV genome replication as well as those responsible for the regulation of transcription.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3