Identification of Lactococcus lactis Genes Required for Bacteriophage Adsorption

Author:

Dupont Kitt12,Janzen Thomas3,Vogensen Finn Kvist12,Josephsen Jytte12,Stuer-Lauridsen Birgitte3

Affiliation:

1. Department of Food Science

2. Centre for Advanced Food Studies, The Royal Veterinary and Agricultural University, Frederiksberg

3. Applied Biotechnology, Chr. Hansen A/S, Hørsholm, Denmark

Abstract

ABSTRACT The aim of this work was to identify genes in Lactococcus lactis subsp. lactis IL1403 and Lactococcus lactis subsp. cremoris Wg2 important for adsorption of the 936-species phages bIL170 and φ645, respectively. Random insertional mutagenesis of the two L. lactis strains was carried out with the vector pGh9:IS S1 , and integrants that were resistant to phage infection and showed reduced phage adsorption were selected. In L. lactis IL1403 integration was obtained in the ycaG and rgpE genes, whereas in L. lactis Wg2 integration was obtained in two genes homologous to ycbC and ycbB of L. lactis IL1403. rgpE and ycbB encode putative glycosyltransferases, whereas ycaG and ycbC encode putative membrane-spanning proteins with unknown functions. Interestingly, ycaG , rgpE , ycbC , and ycbB are all part of the same operon in L. lactis IL1403. This operon is probably involved in biosynthesis and transport of cell wall polysaccharides (WPS). Binding and infection studies showed that φ645 binds to and infects L. lactis Wg2, L. lactis IL1403, and L. lactis IL1403 strains with pGh9:IS S1 integration in ycaG and rgpE , whereas bIL170 binds to and infects only L. lactis IL1403 and cannot infect Wg2. These results indicate that φ645 binds to a WPS structure present in both L. lactis IL1403 and L. lactis Wg2, whereas bIL170 binds to another WPS structure not present in L. lactis Wg2. Binding of bIL170 and φ645 to different WPS structures was supported by alignment of the receptor-binding proteins of bIL170 and φ645 that showed no homology in the C-terminal part.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3