Purification, characterization, and specificity of dextranase inhibitor (Dei) expressed from Streptococcus sobrinus UAB108 gene cloned in Escherichia coli

Author:

Sun J W1,Wanda S Y1,Curtiss R1

Affiliation:

1. Department of Biology, Washington University, St. Louis, Missouri 63130, USA.

Abstract

The dextranase inhibitor gene (dei) from Streptococcus sobrinus UAB108 was previously cloned, expressed, and sequenced. Its gene product (Dei) has now been purified as a single band with apparent molecular mass of 43 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The specific activity of Dei increased 121-fold upon purification. Most Dei activity (91.2%) was located in the periplasmic fraction from recombinant Escherichia coli cells. Dei competitively inhibits dextranase (Dex). This competitive inhibition mechanism has been further shown by detection and recovery of the intermediate enzyme-inhibitor (Dex-Dei) complex by gel filtration technology using fast protein liquid chromatography. Calibration of their molecular masses indicated that native Dei exists as a tetramer, Dex exists as dimer, and the Dex-Dei complex consists of two Dex molecules with two Dei molecules. Deletion analysis indicates that the intact Dei molecule is essential for Dei activity but not for glucan binding and immune cross-reaction. Dei is a special kind of glucan-binding protein with ability to inhibit Dex with high specificity. It can inhibit endogenous Dex, which can make more branches in glucan with the cooperation of the glucosyltransferase GTF-I. This inhibition cause the accumulation of water-soluble glucan. The latter reaction product can inhibit plaque formation and adherence of the mutans group of streptococcal cells. Dei derived from S. sobrinus UAB108 can inhibit only Dex from S. sobrinus (serotypes d and g), S. downei (previously S. sobrinus, serotype h), and S. macacae (serotype h). This finding suggests that Dei is another important protein existing in some serotypes of the mutans group of streptococci which participates in sucrose metabolism through its interaction with Dex.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3