Affiliation:
1. Department of Microbiology, University of Alabama at Birmingham 35294.
Abstract
The Streptococcus mutans serotype c gtfA gene encodes a 55-kilodalton protein which catalyzes the synthesis of a small glucan (1.5 kilodaltons) from sucrose (J.P. Robeson, R.G. Barletta, and R. Curtiss III, J. Bacteriol. 153:211-221, 1983). To investigate the role of the GtfA enzyme in virulence, we constructed S. mutans gtfA mutants from three cariogenic serotype c strains. A plasmid that carried an erythromycin resistance determinant and an internal fragment of the gtfA gene but that was unable to replicate in streptococci was used to transform S. mutans. The erythromycin-resistant transformants carried a partial duplication of the internal gtfA fragment, because of the integration of plasmid sequences within the S. mutans gtfA gene, which also resulted in the inactivation of the gtfA gene. This was verified by Southern DNA hybridization analysis and Western blot studies of cellular protein extracts of the mutant strains with GtfA antiserum. Mutants were fully virulent in both germfree and conventional rats. These results do not rule out the involvement of the GtfA protein in virulence. Pucci and Macrina (M.J. Pucci and F.L. Macrina, Infect. Immun. 54:77-84, 1986) have suggested that the GtfA enzyme synthesizes a primer for water-insoluble glucans. Another S. mutans protein, presumably a glucosyltransferase, may have a similar function and, thus, may obscure the relevance of the GtfA enzyme in pathogenesis.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献