Intracellular pH Distribution in Saccharomyces cerevisiae Cell Populations, Analyzed by Flow Cytometry

Author:

Valli Minoska1,Sauer Michael1,Branduardi Paola2,Borth Nicole1,Porro Danilo2,Mattanovich Diethard1

Affiliation:

1. Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna, Austria

2. Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy

Abstract

ABSTRACT Intracellular pH has an important role in the maintenance of the normal functions of yeast cells. The ability of the cell to maintain this pH homeostasis also in response to environmental changes has gained more and more interest in both basic and applied research. In this study we describe a protocol which allows the rapid determination of the intracellular pH of Saccharomyces cerevisiae cells. The method is based on flow cytometry and employs the pH-dependent fluorescent probe carboxy SNARF-4F. The protocol attempts to minimize the perturbation of the system under study, thus leading to accurate information about the physiological state of the single cell. Moreover, statistical analysis performed on major factors that may influence the final determination supported the validity of the optimized protocol. The protocol was used to investigate the effect of external pH on S. cerevisiae cells incubated in buffer. The results obtained showed that stationary cells are better able than exponentially grown cells to maintain their intracellular pH homeostasis independently of external pH changes. Furthermore, analysis of the intracellular pH distribution within the cell populations highlighted the presence of subpopulations characterized by different intracellular pH values. Notably, a different behavior was observed for exponentially grown and stationary cells in terms of the appearance and development of these subpopulations as a response to a changing external pH.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3