Affiliation:
1. Ottawa Institute of Systems Biology University of Ottawa Canada
2. Department of Cellular and Molecular Medicine University of Ottawa Canada
Abstract
Polyphosphate (polyP) is a conserved polymer of inorganic phosphate residues that can reach thousands of moieties in length. PolyP has been implicated in cellular functions ranging from energy and phosphate homeostasis to cell signalling in eukaryotes from yeast to humans. Despite the interest in the role of polyP as a signalling molecule, the spatiotemporal regulation of polyP itself remains poorly understood. This knowledge gap limits our ability to understand how polyP impacts the physiology of normal and diseased cells and how this might be exploited in a therapeutic context. Polyphosphatases, enzymes that degrade polyP to generate shorter chains and free inorganic phosphate are ideally positioned to mediate polyP dynamics. However, little is known about how the activities of these enzymes are linked to specific cellular functions and how they might be regulated. Here, we provide an in‐depth overview of polyphosphatase enzymes in budding yeast, which has served as a workhorse for polyP research, and in mammalian cells where the enzymes that make and degrade polyP have remained elusive. We identify critical open questions in both systems and propose strategies to guide future work.
Funder
Canadian Institutes of Health Research
Subject
Cell Biology,Genetics,Molecular Biology,Biochemistry,Structural Biology,Biophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献