The emerging landscape of eukaryotic polyphosphatases

Author:

McCarthy Liam12,Downey Michael12ORCID

Affiliation:

1. Ottawa Institute of Systems Biology University of Ottawa Canada

2. Department of Cellular and Molecular Medicine University of Ottawa Canada

Abstract

Polyphosphate (polyP) is a conserved polymer of inorganic phosphate residues that can reach thousands of moieties in length. PolyP has been implicated in cellular functions ranging from energy and phosphate homeostasis to cell signalling in eukaryotes from yeast to humans. Despite the interest in the role of polyP as a signalling molecule, the spatiotemporal regulation of polyP itself remains poorly understood. This knowledge gap limits our ability to understand how polyP impacts the physiology of normal and diseased cells and how this might be exploited in a therapeutic context. Polyphosphatases, enzymes that degrade polyP to generate shorter chains and free inorganic phosphate are ideally positioned to mediate polyP dynamics. However, little is known about how the activities of these enzymes are linked to specific cellular functions and how they might be regulated. Here, we provide an in‐depth overview of polyphosphatase enzymes in budding yeast, which has served as a workhorse for polyP research, and in mammalian cells where the enzymes that make and degrade polyP have remained elusive. We identify critical open questions in both systems and propose strategies to guide future work.

Funder

Canadian Institutes of Health Research

Publisher

Wiley

Subject

Cell Biology,Genetics,Molecular Biology,Biochemistry,Structural Biology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3