Affiliation:
1. New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
2. Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Abstract
ABSTRACT
Specific mutations were created in the cytoplasmic domain of the gp41 transmembrane protein of simian immunodeficiency virus strain 239 (SIV239). The resultant strains included a mutant in which Env residue 767 was changed to a stop codon, a double mutant in which positions 738 and 739 were changed to stop codons, another mutant in which a prominent endocytosis motif was changed from YRPV to GRPV by the substitution of tyrosine 721, and a final combination mutant bearing Q738stop, Q739stop, and Y721G mutations. The effects of these mutations on cell surface expression, on Env incorporation into virions, and on viral infectivity were examined. The molar ratio of Gag to gp120 of 54:1 that we report here for SIV239 virions agrees very well with the ratio of 60:1 reported previously by Chertova et al. (E. Chertova, J. W. Bess, Jr., B. J. Crise, R. C. Sowder II, T. M. Schaden, J. M. Hilburn, J. A. Hoxie, R. E. Benveniste, J. D. Lifson, L. E. Henderson, and L. O. Arthur, J. Virol.
76:
5315-5325, 2002), although they were determined by very different methodologies. Assuming 1,200 to 2,500 Gag molecules per virion, this corresponds to 7 to 16 Env trimers per SIV239 virion particle. Although all of the mutations increased Env levels in virions, E767stop had the most dramatic effect, increasing the Env content per virion 25- to 50-fold. Increased levels of Env content in virions correlated strictly with higher levels of Env expression on the cell surface. The increased Env content with the E767stop mutation also correlated with an increased infectivity, but the degree of change was not proportional: the 25- to 50-fold increase in Env content only increased infectivity 2- to 3-fold. All of the mutants replicated efficiently in the CEMx174 and Rh221-89 cell lines. Although some of these findings have been reported previously, our findings show that the effects of the cytoplasmic domain of gp41 on the Env content in virions can be dramatic, that the Env content in virions correlates strictly with the levels of cell surface expression, and that the Env content in virions can determine infectivity; furthermore, our results define a particular change with the most dramatic effects.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology