Mice with a Targeted Deletion of the Tetranectin Gene Exhibit a Spinal Deformity

Author:

Iba Kousuke1,Durkin Marian E.1,Johnsen Lise1,Hunziker Ernst2,Damgaard-Pedersen Karen3,Zhang Hong1,Engvall Eva4,Albrechtsen Reidar1,Wewer Ulla M.1

Affiliation:

1. The Institute of Molecular Pathology, University of Copenhagen, 1 and

2. The M. E. Muller Institute for Biomechanics, University of Bern, Bern, Switzerland 2 ; and

3. Department of Radiology, The Rigshospitalet University Hospital, 3 Copenhagen, Denmark;

4. The Burnham Institute, La Jolla, California4

Abstract

ABSTRACT Tetranectin is a plasminogen-binding, homotrimeric protein belonging to the C-type lectin family of proteins. Tetranectin has been suggested to play a role in tissue remodeling, due to its ability to stimulate plasminogen activation and its expression in developing tissues such as developing bone and muscle. To test the functional role of tetranectin directly, we have generated mice with a targeted disruption of the gene. We report that the tetranectin-deficient mice exhibit kyphosis, a type of spinal deformity characterized by an increased curvature of the thoracic spine. The kyphotic angles were measured on radiographs. In 6-month-old normal mice ( n = 27), the thoracic angle was 73° ± 2°, while in tetranectin-deficient 6-month-old mice ( n = 35), it was 93° ± 2° ( P < 0.0001). In approximately one-third of the mutant mice, X-ray analysis revealed structural changes in the morphology of the vertebrae. Histological analysis of the spines of these mice revealed an apparently asymmetric development of the growth plate and of the intervertebral disks of the vertebrae. In the most advanced cases, the growth plates appeared disorganized and irregular, with the disk material protruding through the growth plate. Tetranectin-null mice had a normal peak bone mass density and were not more susceptible to ovariectomy-induced osteoporosis than were their littermates as determined by dual-emission X-ray absorptiometry scanning. These results demonstrate that tetranectin plays a role in tissue growth and remodeling. The tetranectin-deficient mouse is the first mouse model that resembles common human kyphotic disorders, which affect up to 8% of the population.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3