Glycerol induced paraspinal muscle degeneration leads to hyper-kyphotic spinal deformity in wild-type mice

Author:

Noonan Alex M.,Buliung Emily,Briar K. Josh,Quinonez Diana,Séguin Cheryle A.,Brown Stephen H. M.

Abstract

AbstractDegenerative spinal disorders, including kyphotic deformity, are associated with a range of degenerative characteristics of the paraspinal musculature. It has therefore been hypothesized that paraspinal muscular dysfunction is a causative factor for degenerative spinal deformity; however, experimental studies demonstrating causative relationships are lacking. Male and female mice received either glycerol or saline injections bilaterally along the length of the paraspinal muscles at four timepoints, each separated by 2 weeks. Immediately after sacrifice, micro-CT was performed to measure spinal deformity; paraspinal muscle biopsies were taken to measure active, passive and structural properties; and lumbar spines were fixed for analysis of intervertebral disc (IVD) degeneration. Glycerol-injected mice demonstrated clear signs of paraspinal muscle degeneration and dysfunction: significantly (p < 0.01) greater collagen content, lower density, lower absolute active force, greater passive stiffness compared to saline-injected mice. Further, glycerol-injected mice exhibited spinal deformity: significantly (p < 0.01) greater kyphotic angle than saline-injected mice. Glycerol-injected mice also demonstrated a significantly (p < 0.01) greater IVD degenerative score (although mild) at the upper-most lumbar level compared to saline-injected mice. These findings provide direct evidence that combined morphological (fibrosis) and functional (actively weaker and passively stiffer) alterations to the paraspinal muscles can lead to negative changes and deformity within the thoracolumbar spine.

Funder

Arthritis Society

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3