Identification and Topological Arrangement of Drosophila Proximal Sequence Element (PSE)-Binding Protein Subunits That Contact the PSEs of U1 and U6 Small Nuclear RNA Genes

Author:

Wang Yan1,Stumph William E.1

Affiliation:

1. Department of Chemistry and Molecular Biology Institute, San Diego State University, San Diego, California 92182-1030

Abstract

ABSTRACT Most small nuclear RNAs (snRNAs) are synthesized by RNA polymerase II, but U6 and a few others are synthesized by RNA polymerase III. Transcription of snRNA genes by either polymerase is dependent on a proximal sequence element (PSE) located upstream of position −40 relative to the transcription start site. In contrast to findings in vertebrates, sea urchins, and plants, the RNA polymerase specificity of Drosophila snRNA genes is intrinsically encoded in the PSE sequence itself. We have investigated the differential interaction of the Drosophila melanogaster PSE-binding protein ( Dm PBP) with U1 and U6 gene PSEs. By using a site specific protein-DNA photo-cross-linking assay, we identified three polypeptide subunits of Dm PBP with apparent molecular masses of 95, 49, and 45 kDa that are in close proximity to the DNA and two additional putative polypeptides of 230 and 52 kDa that may be integral to the complex. The 95-kDa subunit cross-linked at positions spanning the entire length of the PSE, but the 49- and 45-kDa subunits cross-linked only to the 3′ half of the PSE. The same polypeptides cross-linked to both the U1 and U6 PSE sequences. However, there were significant differences in the cross-linking patterns of these subunits at a subset of the phosphate positions, depending on whether binding was to a U1 or U6 gene PSE. These data suggest that RNA polymerase specificity is associated with distinct modes of interaction of Dm PBP with the DNA at U1 and U6 promoters.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3